skip to Main Content

usa+1 (903) 231-3943 ge+995 (593) 675-107


Non Newtonian Fluid CFD Simulation

$97.00 $25.00

Rated 0 out of 5
(be the first to review)

The present project is going to simulate the heat transfer and the flow of a Non-Newtonian fluid containing nanoparticles inside a tube.


This ANSYS Fluent project includes CFD simulation files and training movies.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training) contact our experts via, online support, or WhatsApp.


Project Description

The present project is going to simulate the heat transfer and the flow of a Non-Newtonian fluid containing nanoparticles inside a tube. The base fluid contains water and substances called xanthan which, due to the solubility of xanthan in the water, has the properties of non-Newtonian fluids, with which the non-Newtonian fluid contains aluminum nano oxide (Al2O3) to increase the rate of heat transfer. This simulation was carried out by two-dimensional for simplification, considering the heat flux in the wall. For the non-Newtonian fluid simulation, the Herschel-Bulkley model is used in the viscosity domain.

Assumption (Non-Newtonian)

There are several assumptions used for the present simulation:

The solver is Pressure-Based, and the simulation is Steady. Also, the simulation is performed as axisymmetric.

Geometry & Mesh

The present 2-D modeling is done using Design Modeler software. Due to the simulation of the flow in the tube and the symmetry in it, only one plane of symmetry is modeled. The meshing of the present model was done using ANSYS Meshing software with a structured type. Also, due to the physics of the problem and the existence of heat transfer and better flow simulation along the walls, a near-wall boundary layer mesh is used.

Non-Newtonian Fluid Flo CFD Simulation

We present summaries of the problem definition and problem-solving steps in the table:

LaminarViscous model
Boundry conditions (Non-Newtonian)
velocity inletInlet type
1.269787769 m/sVelocity magnitude (Re=900)
1.732714752 m/sVelocity magnitude (Re=1600)
295 KTemperature
Pressure outletOutlet type
0 Pagauge pressure
300 Kbackflow total temperature
wallWalls type
No slipShear condition
8846.4 W.m-2heat flux
Solution Methods
simple Pressure-velocity coupling
Second orderpressureSpatial discretization
Second order upwindmomentum
Second order upwindenergy
StandardInitialization method
295 Ktemperature

Boundary Condition (Non-Newtonian)

At the inlet, the velocity inlet boundary condition is set where the velocity value is entered at two different Reynolds in this section for the different simulations and at the inlet temperature is 295 Kelvin. The thermal heat flux condition is introduced. At the symmetry part of the pipe, the axis condition and at the outlet condition the pressure outlet is applied by atmospheric pressure and in the thermal part, it has a backflow temperature of 300 Kelvin.

Reference Value

Since the purpose of the problem is to investigate the heat transfer and fluid behavior only in the fluid zone, we select the fluid flow inside the tubular space as the reference zone.

Validation (Non-Newtonian)

In this project, we simulate a non-Newtonian fluid flow with the help of Computational Fluid Dynamics (CFD).
We compare the CFD results with the paper results for the validation.

“Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics”.

We select Figure 3, part “a” as the target diagram for validation,  in two Reynolds 900 and 1600 simulations and we compare the results of the heat transfer coefficient with the paper.

The following table presents the results of this simulation:

Error (%)Present ResultsPaper Results

As you can see in the table above, the error is low, and the simulation results have a good accuracy.


All files, including Geometry, Mesh, Case & Data, are available in Simulation File. By the way, Training File presents how to solve the problem and extract all desired results.



There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
×Close search
Call On WhatsApp