skip to Main Content

Fan Effect on Radiator Cooling CFD Simulation

$280.00 $170.00

Rated 0 out of 5
(be the first to review)

Radiator is a device used to raise air temperature in an environment.

This product includes a CFD simulation and training files using ANSYS Fluent software.

There are some free products to check the service quality.


Introduction to Radiator Performance

Radiator is a device to raise air temperature in an environment. The working mechanism of these radiators is that the outlet hot water or outlet hot steam flows of the boiler, flow through the pipes and transfer heat to the radiator fins, increasing the temperature of these plates, and consequently increasing the temperature of the room temperatures. Radiators are usually made of aluminum, cast iron and steel because they have a very good thermal conductivity. We can divide radiators into two horizontal and vertical groups according to the location of the fans.

Problem Description of radiator

The present problem is to simulate the heat transfer and air flow around a radiator. There are three horizontal fans for force convection. It consists of several rows of fins and aluminum plates that increase the rate of heat transfer. Inside the top and bottom tubes of the radiator and its middle fins passes the hot water flow, which is not included in the modeling; in fact, it is assumed that all the walls of the radiator tubes and fins have specified constant temperature as a profile. Therefore, the temperature profile is the function of the height of the plates.

Assumption for Radiator CFD Simulation

There are several assumptions for the present simulation:

The simulation is PRESSURE_BASED.

We use STEADY STATE solver.

The Earth’s gravity effect in the Y direction is considered to be 9.81 ms-2. Because in this problem, the effect of the buoyancy flow also been investigated in addition to the force convection.


The present 3-D model is done by design Modeler software. The present model consists of three main parts including radiator body, fans and ambient space. The radiator consists of four sections, each consisting of fourteen rows of fin plates and two hot water tubes above and below the radiators. Also, three horizontal fans are used to create airflow next to the radiator body, so that the fan locates in the horizontal direction on the left side and generates airflow for force convection.


The unstructured mesh of the present model was performed by ANSYS Meshing software. Also, due to the physic of the problem and the need for heat transfer between the fins and the fluid flow, the boundary layer (inflation) mesh has been applied on the surfaces of all model walls, especially the radiator fin walls. Face sizing is also applied to the surfaces of radiator fin walls to increase mesh accuracy. The number of cells produced is 4683472.

radiator CFD Simulation

Summary of the steps to define and solve the problem are presented in the table.

k-epsilon Viscous model
Standard k-epsilon model
RNG Near wall tratment
on Energy
Boundry conditions for radiator simulation
pressure inlet Inlet type
0 Pa gauge total pressure
323.15 K total temperature
Pressure outlet Outlet type
0 Pa gauge pressure
323.15 K backflow total temperature
wall Walls type
udf temperature for radiator’s walls
0 W.m-2 heat flux for fan’s walls
x : -1 zone average direction
polynomial Pressure jump
Solution Methods for radiator simulation
Coupled   Pressure-velocity coupling
Satndard pressure Spatial discretization
First order upwind momentum
Second order upwind energy
First order upwind turbulent kinetic energy
First order upwind turbulent dissipation rate
Standard Initialization method
323.15 K temperature


All files, including Geometry, Mesh, Case & Data, are available in Simulation File. By the way, Training File presents how to solve the problem and extract all desired results.


There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Back To Top
×Close search
Call On WhatsApp