skip to Main Content

Gasoline Solidification & Melting CFD Simulation

$110.00 $99.00

Rated 0 out of 5
(be the first to review)

Gasoil is not a pure substance and consists of several hydrocarbons and additives such as ethanol, hexane, heptane and so on. Since most of the gasoline constituents have a unique chemical structure called isomers, the solidification and melting point of each of these materials is different. Therefore, the gasoline does not have a specific solidification and melting point. But it has a specific temperature range for melting and solidification.

This product includes a CFD simulation and training files using ANSYS Fluent software.

There are some free products to check the service quality.


Helical Heat Exchanger in Fuel Tank

One of the disadvantages of frozen gasoline fuel is when the temperature drops during cold seasons or in cold places. When the gasoline temperature drops, sediments and adhesives are removed first, then heavy hydrocarbon molecules begin to freeze and continue to mummify as temperatures continue to decrease. To prevent freezing of gasoline, it is necessary to raise the temperature of the gasoline in the fuel storage tanks. One way to increase the temperature of the gasoline fuel in the fuel tank is to use pipes carrying the hot fluid flow. The use of helical tubes in situations where space constraints, are due to greater heat transfer in a given space is of particular interest.

Project Description

The present issue concerns the simulation of a gasoline fuel tank carrying a single-way reciprocating spiral tube passing through the tank. This inner tube carries a flow of water at a temperature higher than the temperature of the gasoline to increase the fuel temperature by creating heat transfer between the diesel and the water and thus prevent freezing inside the tank. Therefore, the present model uses a solidification and melting module for the simulation.

Assumption for Solidification and Melting CFD Simulation

Problem-solving is based on a pressure-based perspective.
The simulation is transient.
We take the effect of Earth’s gravity on the model into account.

Geometry & Mesh

We designed the 3-D geometry of the model using Design Modeler software. The model consists of two main parts, including a fuel tank and a spiral inner tube for hot water flow. To mesh the present model, we have used ANSYS Meshing software and unstructured mesh. The inner tube uses a finer grid.

Solidification & Melting Module

There are various ways to define the phase change process in Fluent software. To define the phase change from gas to liquid or liquid to gas, we use multi-phase models and the mass transfer process between two phases; To define the phase change from gas to solid, we use a discrete phase model; and finally, we use the Solidification & Melting model to define the phase change from liquid to solid and vice versa.


All files, including Geometry, Mesh, Case & Data, are available in Simulation File. By the way, Training File presents how to solve the problem and extract all desired results.



There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Back To Top
×Close search
Call On WhatsApp