Solidification and Melting in fuel tank ANSYS Fluent CFD Simulation Training

Rated 0 out of 5
(be the first to review)


The present problem concerns the CFD simulation of a gasoline fuel tank carrying a reciprocating spiral tube passing through the tank for the frozen fuel melting by ANSYS Fluent software.

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, or WhatsApp.


Helical Heat Exchanger in Fuel Tank

One of the disadvantages of frozen gasoline fuel is when the temperature drops during cold seasons or in cold places. When the gasoline temperature drops, sediments and adhesives are removed first, then heavy hydrocarbon molecules begin to freeze and continue to mummify as temperatures continue to decrease. To prevent freezing of gasoline, it is necessary to raise the temperature of the gasoline in the fuel storage tanks. One way to increase the temperature of the gasoline fuel in the fuel tank is to use pipes carrying the hot fluid flow. The use of helical tubes in situations where space constraints, are due to greater heat transfer in a given space is of particular interest.

Gasoil is not a pure substance and consists of several hydrocarbons and additives such as ethanol, hexane, heptane and so on. Since most of the gasoline constituents have a unique chemical structure called isomers, the solidification and melting point of each of these materials is different.

Project Description

The present issue concerns the simulation of a gasoline fuel tank carrying a single-way reciprocating spiral tube passing through the tank. This inner tube carries a flow of water at a temperature higher than the temperature of the gasoline to increase the fuel temperature by creating heat transfer between the diesel and the water and thus prevent freezing inside the tank. Therefore, the present model uses a solidification and melting module for the simulation.

The Assumption for Solidification and Melting CFD Simulation

Problem-solving is based on a pressure-based perspective.
The simulation is transient.
We take the effect of Earth’s gravity on the model into account.

Geometry & Mesh

We designed the 3-D geometry of the model using Design Modeler software. The model consists of two main parts, including a fuel tank and a spiral inner tube for hot water flow. To mesh the present model, we have used ANSYS Meshing software and unstructured mesh. The inner tube uses a finer grid.

CFD Simulation Steps

Here are some summaries of the problem definition and problem-solving steps:

k-epsilon Viscous model
Standard k-epsilon model
Standard wall function Near wall tratment
Solidification/Melting model Solidification & Melting
100000 Mushy zone parameter
on energy
Boundry conditions
Mass-flow inlet Inlet type
0.194 kg.s-1 mass-flow rate – water
353 K temperature – water
Pressure outlet Outlet type
0 Pa gauge pressure
wall Walls type
0 (isolated) heat flux
Solution Methods
Coupled   Pressure-velocity coupling
Second order upwind pressure Spatial discretization
First order upwind momentum
First order upwind energy
First order upwind turbulent kinetic energy
First order upwind turbulent dissipation rate
Standard Initialization method
253 K Initial temperature

Solidification & Melting Module

There are various ways to define the phase change process in ANSYS Fluent software. To define the phase change from gas to liquid or liquid to gas, we use multi-phase models and the mass transfer process between two phases. To define the phase change from gas to solid, we use a discrete phase model; and finally, we use the Solidification & Melting model to define the phase change from liquid to solid and vice versa.

Water-liquid Gasoline
251 253 Solidus temperature (K)
252 279 Liquidus temperature (K)
0 10000 Pure solvent melting heat (

You can obtain Geometry & Mesh file, and a comprehensive Training Movie which presents how to solve the problem and extract all desired results.


There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top

Refund Reason

you tube
Call On WhatsApp