Shell and Tube Heat Exchanger with a spiral Baffle, ANSYS Fluent Training

5.0 (2 reviews)


The problem simulates heat transfer inside a shell and tube heat exchanger with a spiral buffer.

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, or WhatsApp.


Shell and Tube HEX with a Spiral Buffer Project Description

The problem simulates heat transfer inside a shell and tube heat exchanger with a spiral buffer by ANSYS Fluent software. The heat exchanger is a device for transferring heat between two hot and cold fluids. The two most common heat exchangers in the industry are plate heat exchangers and shell and tube heat exchangers. The shell and tube heat exchangers consist of a cylindrical outer shell and a set of inner tubes inside.

One of the cold or hot fluids passes through the space between the tubes and the outer shell, and the other fluid passes through the inner space of the inner tubes in the same direction or vice versa. One way to enhance the heat transfer process between two fluids is to use buffers in the fluid flow path inside the shell.

The use of buffers in the flow of fluid causes turbulence in the fluid flow through the shell and further contact of the fluid with the tubes, and as a result, heat transfer is enhanced; But on the other hand, it causes a pressure drop in the fluid as well as the deposition of fluid in the shell. Therefore, the use of helical baffle reduces the pressure drop and sedimentation inside the heat exchanger in addition to strengthening the heat transfer between the two fluids.

In the current model, the heat exchanger consists of seven internal tubes and a spiral buffer inside the shell. The flow of water with a flow rate of 0.5 kg.s-1 and a temperature of 300 K enters the shell from the shell inlet and is exchanged with tubes with a constant temperature of 450 K.

In fact, it is assumed that the cold flow passes through the shell and the hot flow through the inner tubes; But for simplicity, the model assumes that the temperature of the hot fluid flowing through the tubes during the process has a constant temperature value, which is assumed to be 450 K.

Shell and Tube HEX Geometry & Mesh

The present 3-D model is designed using Design Modeler software. The model is a shell and tube heat exchanger that includes an external shell and seven internal tubes inside. The diameter of the shell is 3 cm and its length is 60 cm. Inside the interior and between the shell and the tube, a spiral buffer is used. The following figure shows a view of the geometry.

shell and tube

The meshing of the model has been done using ANSYS Meshing software and the mesh type is unstructured. The element number is 1629340 and the accuracy of the cells in the areas adjacent to the wall of the tubes is higher. The following figure shows a view of the mesh.

shell and tube

CFD Simulation

To simulate the present problem, several assumptions are considered:

  • The simulation is steady-state.
  • The solver is pressure-based.
  • The effect of the gravity on the fluid flow is 9.81 m.s-2 along the y-axis downward.

A summary of the steps for defining the problem and its solution is given in the following table:

Models (shell and tube)
k-epsilon Viscous model
realizable k-epsilon model
standard wall function near-wall treatment
on Energy
Boundary conditions (shell and tube)
mass flow inlet Inlet
0.5 kg.s-1 mass flow rate
300 K temperature
Pressure outlet Outlet
0 Pa gauge pressure
wall Baffle’s wall
stationary wall wall motion (shell and tube)
coupled thermal condition
Outer wall for shell
stationary wall wall motion
0 W.m-2 heat flux
wall Inner walls for tubes
stationary wall wall motion
450 K temperature
Solution Methods (shell and tube)
Simple   Pressure-velocity coupling
Standard pressure Spatial discretization
first-order upwind momentum
first-order upwind turbulent kinetic energy
first-order upwind turbulent dissipation rate
first-order upwind energy
Initialization (shell and tube)
Standard Initialization method
0 Pa gauge pressure
0 m.s-1 x-velocity, z-velocity
0.7106586 m.s-1 y-velocity
300 K temperature

Shell and Tube Results

At the end of the solution process, two-dimensional and three-dimensional contours of pressure, temperature, and velocity, as well as two-dimensional and three-dimensional velocity vectors and path lines, are obtained.

You can obtain Geometry & Mesh file and a comprehensive Training Movie that presents how to solve the problem and extract all desired results.

2 reviews for Shell and Tube Heat Exchanger with a spiral Baffle, ANSYS Fluent Training

  1. Marie Wallace

    Would you please tell me when do we use “Coupled” thermal condition in the wall boundaries?

    • melika maysoori

      Hi Marie. Sure 🙂 . If the wall is two-sided, i.e., a wall boundary is located between two areas of connection (fluid-fluid or fluid-solid), the problem of conjugated heat transfer is raised. In such a case, when the Mesh file is read by Fluent software, a virtual wall called Shadow is automatically assigned to each of the two-sided walls. For example, if the boundary of a Wall-1 is a double-sided wall. After calling in Fluent, the Wall-1-shadow virtual wall border is created, which corresponds precisely to the Wall-1 border, and each of these borders is connected to one of the two connection areas. In such conditions, different boundary conditions can be considered for the two walls, or by selecting the Coupled option, the heat transfer of the two walls is affected by each other and is in the form of a couple. The following describes how to define the thermal conditions for a double-sided wall in a coupled or separate manner.

      If both sides of the wall are coupled, select the Coupled option (Coupled thermal condition appears only in the boundary condition of the double-walled walls). In this case, the definition of other parameters is unnecessary because Fluent software automatically calculates the heat transfer in the wall based on the values calculated in the elements adjacent to the wall. The material, thickness, and amount of heat production of the wall can be determined to calulate the thin walls. It is noteworthy that the definition of these parameters for a wall is automatically considered for its corresponding virtual wall.

  2. Barbara

    This tutorial helped me with my project.
    Many thanks for your assistance.

    • melika maysoori

      You’re welcome. 🙂 If you need more training, you can refer to the rest of our related products, or contact us for private online training.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top

Refund Reason

you tube
Call On WhatsApp