skip to Main Content

usa+1 (903) 231-3943 ge+995 (593) 675-107

Sale

γ-Al2O3/water Through a Circular Tube with Twisted Tape Inserts

$60.00 $44.00

Rated 0 out of 5
(be the first to review)

The simulation is based on the reference article “Study on heat transfer and friction factor characteristics of γ-Al2O3/water through circular tube twisted tape inserts with different thicknesses”. Its results are compared and validated with the results in the article.

This ANSYS Fluent project includes CFD simulation files and a training movie.

There are some free products to check our service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, or WhatsApp.

Description

Paper Description

The present problem simulates the γ-Al2O3/water flow inside a circular tube with twisted tape inserts. The simulation is based on the reference article “Study on heat transfer and friction factor characteristics of γ-Al2O3/water through circular tube twisted tape inserts with different thicknesses“. Its results are compared and validated with the results in the article. In this project, the γ-Al2O3/water fluid will enter the computational domain with an initial temperature of 300K and a velocity of 0.716m/s (referring to Reynolds number = 500) through a multiple-staged twisted circular tube. The twisted tube’s outer wall is exposed to a heat flux rate of 5000 W/m2 and causes the fluid flow’s temperature to increase.

Twisted Tape Geometry & Mesh

The geometry of this project is designed in ANSYS design modeler and is meshed in ANSYS meshing software. The mesh type used for this geometry is structured, and the element number is 2146882.

γ-Al2O3/water γ-Al2O3/water

γ-Al2O3/water Through a Circular Tube with Twisted Tape Inserts CFD Simulation Settings

The critical assumptions considered in this project are:

  • Simulation is done using a pressure-based solver.
  • The present simulation and its results are considered steady and do not change as a function of time.
  • The effect of gravity has been taken into account and is equal to -9.81 in the Y direction.

The applied settings are summarized in the following table.

 
Models
Viscous model k-epsilon
k-epsilon model standard
near-wall treatment standard wall function
Energy on
Boundary conditions
Inlet Velocity inlet
Velocity magnitude 0.716 m/s
Temperature 300 K
Outlet Pressure outlet
Walls Stationary wall
Outer Tube walls Heat flux 5000 W/m2
Inner walls Heat flux 0 W/m2
Solution Methods
Pressure-velocity coupling   SIMPLE
Spatial discretization Pressure Second-order
Momentum first-order upwind
Energy first-order upwind
turbulent kinetic energy first-order upwind
turbulent dissipation rate first-order upwind
Initialization
Initialization method   Standard
Gauge pressure 0 Pa
Velocity (x,y,z) (0,0,0.716) m/s
Turbulent kinetic energy 0.00192246 m2/s2
Turbulent dissipation rate 0.03318268 m2/s3
Temperature 300 K

Paper Validation Results

At the end of this simulation, the present work results are compared with results obtained by the paper. For this purpose, the diagram in figure 10 was used, which shows Nu number’s changes over different Re numbers. It should also be noted that we have validated the results for Re number = 500.

γ-Al2O3/water

All files, including Geometry, Mesh, Case & Data, are available in Simulation File. By the way, the Training File presents how to solve the problem and extract all desired results.

Reviews

There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
×Close search
Search
Call On WhatsApp
UpTo 100% Discount on all Products -3 Days 18 Hours 17 Minutes 8 Seconds
Buy Now