skip to Main Content

usa+1 (903) 231-3943 ge+995 (593) 675-107


Air Conditioning of an Office CFD Simulation

$93.00 $31.00

Rated 0 out of 5
(be the first to review)

Heating, Ventilation, and Air Conditioning (HVAC) is a set of processes used to control the temperature, humidity, and ambient air quality of an environment.

This product includes CFD simulation files and a training movie using ANSYS Fluent software.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via, online support, or WhatsApp.


Problem Description for an Office HVAC

The present study examines the performance of fan-driven airflow inside an office for HVAC operation, including a computer and four lamps. The computer is made of plastic and is considered as a heat source equivalent to 700 W.m-3, while each lamp material is glass and a heat source equal to 2500 W.m-3. On the upper part of two walls of the office, we install two fans to transfer airflow into the office. We also assumed that the doors and windows of the office have convection heat transfer by ambient air. The problem goal is to investigate the effect of blown airflow on the components and people in the office. Also, we simulate the influence of airflow on the heat sources applied in the model.

The Assumption for HVAC simulation

We consider several hypotheses for this simulation:

The office HVAC simulation is STEADY-STATE, and the solver is PRESSURE-BASED.

We consider the effect of gravity on the flow to be 9.81 m.s-2, because of the natural convection phenomenon caused by the buoyancy force in this model.

Geometry and Mesh

The present 3-D model was designed by Design Modeler software. The geometry consists of a cubic space called the office for HVAC operation, which consists of several components, including human, lamp, computer, desk and so on.

An unstructured mesh was performed using ANSYS Meshing software. Meshing has been done more accurately for the internal components of the office. In this network, the element number is 547820.

HVAC CFD Simulation Steps

Here is a summary of the steps to define and solve the problem:

Models (Air Conditioning)
k-epsilonViscous model
Standardk-epsilon model
Standard wall functionNear wall treatment
Boundary conditions for HVAC Simulation (Air Conditioning)
Polynomialpressure jumpfan 1
polynomialpressure jumpfan 2
wallWalls type for HVAC CFD Simulation
20 W.m-2.K-1heat transfer coefficientInlet (door)
283 KFree stream temperature
25 W.m-2.K-1heat transfer coefficientwindows
283 KFree stream temperature
310 Ktemperaturewall under computer
isolatedbottom (floor)
isolatedmain walls (outer walls)
isolatedwalls of other componenet in office for HVAC CFD Simulation
couppledother inner walls
Solution Methods for HVAC Simulation
Simple Pressure-velocity coupling
Second order upwindpressureSpatial discretization for HVAC Simulation
Second order upwindmomentum
Second order upwindenergy
Second order upwinddensity
first order upwindturbulent kinetic energy
first order upwindturbulent dissipation rate
Initialization for HVAC CFD simulation
StandardInitialization method
283 Ktemperature
0 m.s-1velocity (x, y, z)

Ideal Gas

Since in the present model, the airflow is blown by the fans at a rapid rate, the ideal gas model is used to define the air because the airflow is compressible during the process. In the compressible flows, the density is not a constant value and varies with pressure and temperature, which is calculated by the relation of the ideal gas law as follows:

ideal gas


All files, including Geometry, Mesh, Case & Data, are available in Simulation File. By the way, Training File presents how to solve the problem and extract all desired results.


There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
×Close search
Call On WhatsApp