Acoustic (Broadband) Investigation on a HAWT, ANSYS Fluent CFD Simulation Tutorial
$270.00 Student Discount
- The current CFD Analysis simulates the Acoustic performance of a HAWT via ANSYS Fluent software.
- We have designed the initial geometry using ANSYS Design modeler software and created the mesh using ANSYS meshing software.
- The total number of elements is 2,696,011.
- The Broadband acoustic model has been used for acoustic modeling.
- MRF method has been used in Cell Zone Conditions for turbine rotation.
To Order Your Project or benefit from a CFD consultation, contact our experts via email ([email protected]), online support tab, or WhatsApp at +44 7443 197273.
There are some Free Products to check our service quality.
If you want the training video in another language instead of English, ask it via [email protected] after you buy the product.
Description
Description
In this simulation, the acoustic performance of a wind turbine and the noises created by it at different points of its surrounding domain have been investigated. The project is done in a transient state with the help of ANSYS Fluent software.
This turbine rotates at a speed of 72 radians/second around the horizontal axis. A stream of air moves towards it at a speed of 15 meters/second. Several points in front and behind the turbine have been selected for investigation. The acoustic parameters in this project have been compared with the ‘Acoustic (FWH) Investigation on a HAWT, ANSYS Fluent CFD Simulation Tutorial‘ Project.
Notably, in this acoustic method, the Broadband model, the point must be created in the Surface-Create-Point tab available on the Domain tab. It then should define plots in the Report Definitions tab to plot them transiently in every defined time step.
Design modeler software was used to model the geometry of this problem. ANSYS meshing software was also used to mesh this geometry. The type of element is Tetrahedral, and their final number is 2,696,011.
This product is the 6th episode of the Acoustic Model Training Course.
Methodology: Acoustic (Broadband) Investigation on a HAWT
The Broadband acoustic model has been used for acoustic modeling. Also, the MRF method has been used in Cell Zone Conditions for turbine rotation.
The used turbulence model is K-ω SST.
Conclusion
In conclusion, the Acoustic parameters of the solution include the following parameters in the domain or all of the points defined in the domain are extracted separately:
- Acoustic Power Level (dB)
- Surface Acoustic Power Level (dB)
- Power Spectral Density
- Lilley’s Self-Noise Source
- …
It can be seen that the amount of Acoustic Power Level (dB) has increased significantly on the surface of the turbine by moving away from the hub as its magnitude velocity increases.
You can compare the parameters of this Project with the mentioned Project in the description, which is the same model but solved using the Williams & Hawkings Model.
Finally, the final calculation’s contours, plots, pathlines and FFTs are achieved, and they are visible as figures.
Reviews
There are no reviews yet.