skip to Main Content

usa+1 (903) 231-3943 ge+995 (593) 675-107


Airflow Around a NACA Airfoil CFD Simulation

$116.00 $40.00

Rated 0 out of 5
(be the first to review)

This project is going to simulate an airfoil in the airflow field with a 16-degree attack angle.


This ANSYS Fluent project includes CFD simulation files and a training movie.


To order your ANSYS Fluent project (CFD simulation and training), contact our experts via, online support, or WhatsApp.


Airfoil Project Description

This project is going to simulate an airfoil in the airflow field. Geometric defining parameters include chord line, angle of attack, leading-edge, and trailing edge. The direction of the airflow into the body is defined by the angle of attack (the angle between the chord and the horizontal direction of the airflow velocity). The purpose of this paper is to investigate the behavior of airflow and pressure distribution, as well as to study drag and lift forces.

In the present case, the angle of attack is 16 degrees and the length of the chord and the width of the airfoil are assumed to be equal to 1. Thus, to determine the drag force, the length of the chord must be multiplied by the sine 16 and then across the cross-section width, and to define the lift force, the chord length must be multiplied by the cosine 16 multiplied by the cross-section and then across the width. Therefore, the surface area for calculating the lift and drag forces is equal to the following values, which are defined in the reference values section.

The following figure gives a schematic of the structure of an asymmetric and its defining geometric parameters:



Airfoil Geometry & Mesh

The 2-D geometry of the present model is drawn using the Design Modeler software. First, the coordinates of the points in the wall forming of the desired airfoil are imported to the software, and then, using the called points, it is completely drawn in the software. The far-field boundary required for the analysis of airflow behavior is then drawn around the airfoil according to the relevant standards. The figure below shows an overview of the model’s geometry.


The meshing of the present model has been done using ANSYS Meshing software. The mesh type is unstructured and the element number is equal to 296533. The figure below shows a view of the meshing.



Airflow around an Airfoil CFD Simulation

To simulate the present model, we consider several assumptions, which are:

  • The pressure-based solver is performed.
  • We do not simulate the heat transfer.
  • The present model is steady.
  • We do not consider the effect of gravity on the fluid.

The following is a summary of the steps for defining the problem and its solution:

Models (Airfoil)
k-epsilonViscous model
RNGk-epsilon model
enhanced wall treatmentnear-wall treatment
Velocity inletInlet
20.78736 m.s-1velocity magnitude(Airfoil)
Pressure 0utletOutlet
0 pascalgauge pressure
wallAirfolil’s wall
stationary wallwall motion
Solution Methods (Airfoil)
SIMPLEPressure-velocity coupling
second orderpressureSpatial discretization
second order upwindmomentum
second order upwindturbulent kinetic energy
second order upwindturbulent dissipation rate
HybridInitialization method


At the end of the airfoil solution process, we obtain two-dimensional contours of pressure, velocity, turbulent kinetic energy, as well as two-dimensional pathlines. Also, the value of drag and lift coefficient and forces have been obtained.

Drag force and drag coefficient are equal to:

Lift force and drag coefficient are equal to:


We obtain the drag and lift coefficients for an airfoil with an attack angle of 16 degrees along the length and width of the unit (1):


We compare the values of the lift coefficient with the value in the diagram in the reference:





All files, including Geometry, Mesh, Case & Data, are available in Simulation File. By the way, Training File presents how to solve the problem and extract all desired results.

There are some free products to check the service quality.


There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
×Close search
Call On WhatsApp