Engine Room Ventilation System of Ship, ANSYS Fluent CFD Training

Rated 0 out of 5
(be the first to review)


In this project, the ventilation system of a ship’s engine room is investigated.

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, and WhatsApp.


Introduction to Ship’s Engine Room Ventilation System

On ships, the power needed to start compressors, pumps, fans, etc. are all supplied by electric motors. The engine room occupies the largest part of the space allocated to the various parts inside the ship. Due to the accumulation of all these machines in this space, it is necessary to study how heat is transferred in this space. Optimal design of air conditioning system to supply combustion air inside equipment and regulate temperature and humidity inside this space, is one of the most important points in the design of engine rooms and ship building. Engineers and researchers have always tried to optimize the design of the air conditioning system for the ships by presenting new methods. Simulation and analysis of the ventilation system related to the ship’s engine room can be a great help to better explore new and innovative methods.

Project description

In this project, the ventilation system of a ship’s engine room is investigated by ANSYS Fluent software. This room consists of an air inlet (mass-flow type, 35 Kg/s) and two pressure outlets. The diesel engines and motors generate heat (12500 an 8333.333 W/m3 respectively) while working, the injected air (300 K) has the responsibility of cooling the engine room and lowering the temperature of engines and motors. Standard k-epsilon model with the use of standard wall functions is applied for solving the turbulent flow and energy model is also activated.

Engine Room Geometry & Mesh

The geometry for analyzing this simulation consists of a room in which two motors and four diesel engines exist. Geometry is designed in ANSYS design modeler® and is meshed in ANSYS meshing®. The mesh type used for this geometry is unstructured and the element number is 706053.

engine room engine room

CFD Simulation Settings

The key assumptions considered in this project are:

  • Simulation is done using pressure-based solver.
  • The present simulation and its results are considered to be steady and do not change as a function time.
  • The effect of gravity has been taken into account and is equal to -9.81 m/s2 in Y direction.

The applied settings are summarized in the following table.

(engine room) Models
Viscous model k-epsilon
k-epsilon model standard
near wall treatment standard wall function
Energy model Activated
(engine room) Cell zone conditions
Diesel engines Source term 12500 W/m3
Motors Source term 8333.333 W/m3
(engine room) Boundary conditions
Inlets Mass-flow inlet


Mass-flow 35 Kg/s
Turbulent intensity 5 %
Viscosity ratio 10
Temperature 300 K
Outlets Pressure outlet
wall motion stationary wall
(engine room) Solution Methods
Pressure-velocity coupling Simple
Spatial discretization pressure second order
energy second order upwind
momentum second order upwind
turbulent kinetic energy first order upwind
turbulent dissipation rate first order upwind
(engine room) Initialization
Initialization method   Standard
gauge pressure 0 Pa
velocity (x,y,z) (0,0, -44.08163) m/s
Turbulent kinetic energy 7.286964 m2/s2
Turbulent dissipation rate 32716.32 m2/s3
Temperature 300 K


The contours of pressure, temperature, velocity, streamlines and velocity vectors are presented.

You can obtain Geometry & Mesh file and a comprehensive Training Movie that presents how to solve the problem and extract all desired results.


There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top

Refund Reason

you tube
Call On WhatsApp