UAV External Airflow CFD Simulation, ANSYS Fluent Training

Rated 0 out of 5
(be the first to review)


In this project, the airflow around a drone is simulated.

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, and WhatsApp.


UAV Introduction

UAVs can be considered as small drones. One of the most important advantages of drones is their remote control capability, which has made it particularly popular in the aviation industry, and in the military industry. The design of UAVs requires special care and consideration. Due to the fact that the flight as well as the control of the continuation of the flight in the drones is done through remote control commands, there has been a lot of effort to pay special attention to the structural design of these aircraft in terms of aerodynamics. Simulating the airflow around a UAV is crucial to studying aerodynamic forces and stability, and ultimately good designs. Using simulation software such as ANSYS can significantly reduce the costs of design, construction, and testing of these complicated structures.

Project description

In this project, the airflow around a drone is simulated by ANSYS Fluent software. Due to the high speed of airflow during flight and also the possibility of very high separation in such flows, the standard k-epsilon model with the use of standard wall functions is exploited to analyze the turbulence of the airflow and to better investigate the separation of the current from the surface.

UAV Geometry and Mesh

Considering the high sensitivity in the design of the drone’s body, the initial geometry required for this analysis was generated in CATIA® and completed in Gambit® and also meshed inside Gambit®. The mesh type used for this geometry is unstructured and the element number is 3079338.


CFD Simulation Settings

The assumptions considered in this project are:

  • Simulation is done using a pressure-based solver.
  • The present simulation and its results are considered to be steady and do not change as a function time.
  • The effect of gravity has not been taken into account.

The applied settings are summarized in the following table.

(UAV) Models
Viscous model k-epsilon
k-epsilon model standard
near-wall treatment standard wall function
(UAV) Boundary conditions
Inlet velocity inlet
Velocity magnitude 30 m/s
Turbulent intensity 0.9999999776483 %
Hydraulic diameter 2.5 m
Outlet Pressure outlet
wall motion stationary wall
(UAV) Solution Methods
Pressure-velocity coupling   SIMPLE
Spatial discretization pressure standard
momentum first-order upwind
turbulent kinetic energy first-order upwind
turbulent dissipation rate first-order upwind
(UAV) Initialization
Initialization method   Standard
gauge pressure 0 Pa
velocity (x,y,z) (0,30,0) m/s
Turbulent kinetic energy 0.135 m2/s2
Turbulent dissipation rate 0.0465741 m2/s3

UAV Results

At the end of the solution, we obtain contours of pressure, velocity, streamlines, and velocity vectors.

You can obtain Geometry & Mesh file and a comprehensive Training Movie that presents how to solve the problem and extract all desired results.


There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top

Refund Reason

you tube
Call On WhatsApp