skip to Main Content

usa+1 (903) 231-3943 ge+995 (593) 675-107


Moving Train External Airflow CFD Simulation

$99.00 $19.00

Rated 0 out of 5
(be the first to review)

In this project, the airflow around a moving train is investigated and external airflow parameters were extracted.


This ANSYS Fluent project includes CFD simulation files and a training movie.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, and WhatsApp.



Advanced moving train aerodynamic design is an effective factor in reducing energy consumption. This reduction is possible when the drag force, exerted from the fluid is decreased. Therefore, aerodynamics plays an important role in the design of trains or any moving object that is exposed to airflow. Computational fluid dynamics simulations have reduced the cost of building trains and locomotives, and have made it possible to check the efficiency of the new design before construction.

Moving Train Project Description

In this project, the airflow around a train is investigated and airflow parameters were extracted. Due to the high speed of the train and the speed of airflow, phenomena such as separations or vortexes occur behind the train. Therefore, to better analyze the turbulent flow, the standard k-epsilon model with the use of standard wall functions is exploited.

Moving Train Geometry and Mesh

The geometry of this project consists of a modeled train, and the fluid domain. The geometry is designed and meshed inside GAMBIT®. The mesh type used for this geometry is unstructured and the element number is 1013277.

moving train

CFD Simulation Settings

The assumptions considered in this project are:

  • Simulation is done using a pressure-based solver.
  • The present simulation and its results are considered to be steady and do not change as a function time.
  • The effect of gravity has not been taken into account.

The applied settings are summarized in the following table.

(moving train) Models  
Viscous model   k-epsilon
  k-epsilon model standard
  near-wall treatment standard wall function
Inlet   velocity inlet
  Velocity magnitude 22.22 m/s
(moving train) turbulent kinetic energy 1 m2/s2
  turbulent dissipation rate 1 m2/s3
Outlet   Pressure outlet
  wall motion stationary wall
(moving train) Solution Methods  
Pressure-velocity coupling   SIMPLE
Spatial discretization pressure standard
density first-order upwind
momentum second-order upwind
turbulent kinetic energy first-order upwind
turbulent dissipation rate first-order upwind
(moving train) Initialization  
Initialization method   Standard
  gauge pressure 0 Pa
  velocity (x,y,z) 0 m/s-1
  Turbulent kinetic energy 1 m2/s2
  Turbulent dissipation rate 1 m2/s3


All files, including Geometry, Mesh, Case & Data, are available in Simulation File. By the way, Training File presents how to solve the problem and extract all desired results.


There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
×Close search
Call On WhatsApp
UpTo 100% Discount on all Products 4 Days 19 Hours 26 Minutes 56 Seconds
Buy Now