skip to Main Content

Droplet (Water) Falling CFD Simulation

$270.00 $160.00

Rated 0 out of 5
(be the first to review)

The purpose of the simulation is to investigate the droplet behavior during a downward slide (falling) and the extent of its volume changes.

This product includes a CFD simulation and training files using ANSYS Fluent software.

There are some free products to check the service quality.


Falling Droplet Description

In this problem, a water droplet falling in the air is simulated. Therefore, the two-phase flow model is used to simulate the initial air phase and the secondary water phase. This simulation only includes fluid analysis and does not discuss thermal analysis. The purpose of the simulation is to investigate the drop behavior during a downward slope and the extent of its volume changes. No external factor as a boundary condition affects the droplet, and the downward movement is based solely on the force of gravity. The time taken to process the downward movement of water droplet within the air space is assumed to be 0.26 seconds.

CFD Simulation Assumptions

Problem-solving is based on a pressure-based perspective.

The simulation is unsteady (transient) because the problem deals with the downward droplet over time.

The effect of the Earth’s gravity on the model is considered because gravity is the sole cause of the droplet falling.

Geometry and Mesh

The 3-D geometry of the present model is designed by Design Modeler software. Specific air zone is defined as a cube with a square cross-section of 1 cm and a height of 30 cm.

The meshing of the present model is performed by ANSYS Meshing software. The mesh is structure using face meshing and the element number is 1086822.

Water Droplet Falling CFD Simulation Set-Up

A summary of the problem definition and problem solving steps are presented in the table.

Laminar Viscous model
VOF (volume of fluid) Multiphase model
sharp type
explicit formulation
on Implicit body force
0.25 Courant number
Boundry conditions for droplet falling
wall Walls type
Stationary wall mixture
Solution Methods
Simple   Pressure-velocity coupling
PRESTO pressure Spatial discretization
Second order upwind momentum
Modified HRIC Volume fraction
Initialization of droplet falling CFD simulation
Standard Initialization method
0 m.s-1 velocity (x, y, z)
0 water volume fraction
1 water volume fraction


All files, including Geometry, Mesh, Case & Data, are available in Simulation File. By the way, Training File presents how to solve the problem and extract all desired results.


There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Back To Top
×Close search
Call On WhatsApp