Ejector Two-Phase Flow CFD Simulation, ANSYS Fluent

$150.00 Student Discount

In this project, a two-phase flow of vapor and liquid ammonia in a two-phase ejector has been simulated by ANSYS Fluent software.

Click on Add To Cart and obtain the Geometry file, Mesh file, and a Comprehensive ANSYS Fluent Training Video. By the way, You can pay in installments through Klarna, Afterpay (Clearpay), and Affirm.

To Order Your Project or benefit from a CFD consultation, contact our experts via email ([email protected]), online support tab, or WhatsApp at +44 7443 197273.

There are some Free Products to check our service quality.

If you want the training video in another language instead of English, ask it via [email protected] after you buy the product.

Special Offers For Single Product

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.
If you need expert consultation through the training video, this option gives you 1-hour technical support.
The journal file in ANSYS Fluent is used to record and automate simulations for repeatability and batch processing.
editable geometry and mesh allows users to create and modify geometry and mesh to define the computational domain for simulations.
The case and data files in ANSYS Fluent store the simulation setup and results, respectively, for analysis and post-processing.
Geometry, Mesh, and CFD Simulation methodologygy explanation, result analysis and conclusion
The MR CFD certification can be a valuable addition to a student resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Description

Ejector CFD Simulation, Two-Phase Flow, ANSYS Fluent Training

In general, an ejector is a system of ducting and nozzles used to direct the flow of a high-pressure fluid in such a way that a lower-pressure fluid is entrained in the jet and carried through a duct to a region of higher pressure. It is a fluid-dynamic pump with no moving parts, except a valve to control inlet flow. A steam ejector is a typical application of the principle used to deliver cold water to a boiler against its pressure, using its own live or exhaust steam, replacing any mechanical pump.

Project Description

In this project, a two-phase flow of vapor and liquid ammonia in a two-phase ejector has been simulated by ANSYS Fluent software. The realizable k-epsilon model is used for flow analysis. The VOF multi-phase model for two phases of liquid ammonia and vapor ammonia has been used to investigate the phase interactions. The energy equation is also activated in this analysis. The liquid ammonia will enter the computational domain through the primary inlet with a pressure of 9MPa and a temperature of 393K. This flow will induce the vapor ammonia to exit the ejector along with liquid ammonia.

Ejector Geometry & Mesh

The geometry of this model is designed and meshed in Gambit®. The mesh type used for this geometry is structured and the element number is 11808.

ejector ejector

CFD Simulation Settings

The key assumptions considered in this project are:

  • Simulation is done using a pressure-based solver.
  • The present simulation and its results are steady.
  • The effect of gravity is ignored.

The applied settings are summarized in the following table.

 
(ejector) Models
Viscous model k-epsilon
Model realizable
Near wall treatment Standard wall function
Energy model On
Multi phase VOF
Phase 1 Ammonia vapor
Phase 2 Ammonia liquid
(ejector) Boundary conditions
Outlets Pressure outlet
Gauge pressure 0 Pa
Temperature 312 K
Walls wall motion stationary wall
New wall Heat flux 0 W/m2
wall Coupled
(ejector) Solution Methods
Pressure-velocity coupling Simple
Spatial discretization pressure PRESTO!
Volume fraction compressive
momentum second order upwind
energy second order upwind
Turbulent kinetic energy First order upwind
Turbulent Dissipation rate First order upwind
(ejector) Initialization
Initialization method   Hybrid

Results

We present the contours of, pressure, temperature, velocity, etc.

Reviews

There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
Search
Whatsapp Call On WhatsApp
Udemy