Heat Sink Cooling CFD Simulation, ANSYS Fluent Training

Rated 0 out of 5
(be the first to review)


The present product deals with the simulation of a heat sink and cooling.

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training) contact our experts via [email protected], online support, or WhatsApp.


Heat Sink Cooling Problem Description

The present product deals with the simulation of a heat sink and cooling by ANSYS Fluent software. In the present model, a surface as a heat source with a heat flux equivalent to 600,000 W.m-2 is located at the bottom of the model, which is responsible for continuous heat generation. On this surface, a solid object with several rows of parallel grooves is located to perform the cooling process of high-temperature surfaces. On this solid body and in the space between these parallel grooves, water flows in order to transfer heat from the solid surfaces to water, so that the presence of these grooves increases the contact surface between the solid body and the water flow and thus the cooling process is strengthened. The solid material used in the model is aluminum because aluminum has a very good heat transfer property.

heat sink

Geometry & Mesh of Heat sink

The 3-D geometry of the present model is designed by the Design Modeler software. Since the present model is symmetric, the model is designed semi-symmetric. The present model consists of a heat sink containing a solid part and a fluid part. The solid section has a series of parallel grooves that the fluid flows through these grooves. The meshing of the present model is carried out by ANSYS Meshing software. The mesh is structured in a uniform and conformal manner and the element number is 168480.

heat sink Mr CFD


Several assumptions are used for the present simulation of Heat Sink Cooling:

The solver is Pressure-Based, the simulation is Steady-State, and the gravity effect is ignored.

CFD Simulation

Summaries of the problem definition and problem-solving steps are presented in the table:

Laminar Viscous model
on Energy
Boundary conditions (Heat Sink Cooling)
Velocity inlet Inlet type
0.638 m.s-1 velocity
293 K temperature
Pressure outlet Outlet type
0 Pa gauge pressure
wall Walls type
heat flux = 600000 W.m-2 bottom wall
insulated all outer walls
coupled all inner walls
Solution Methods (Heat Sink Cooling)
Simple   Pressure-velocity coupling
second-order upwind pressure Spatial discretization
second-order upwind momentum
second-order upwind energy
Initialization (Heat Sink Cooling)
Standard Initialization method
0 m.s-1 velocity (x,y,z)
300 K temperature

You can obtain Geometry & Mesh file and a comprehensive Training Movie that presents how to solve the problem and extract all desired results.


There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top

Refund Reason

you tube
Call On WhatsApp