Shell and Tube Heat Exchanger, PCM, Paper Validation

$540.00 Student Discount

  • The problem numerically simulates the shell and tube heat exchanger as a PCM thermal storage system using ANSYS Fluent software.
  • We design the 3-D model with the Design Modeler software.
  • We mesh the model with ANSYS Meshing software, and the element number equals 169171.
  • We define the Solidification and Melting model to define phase change material.
  • We use a UDF to define the temperature-dependent viscosity.
  • This simulation is validated with a reference article.

Special Offers For Single Product

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.
If you need expert consultation through the training video, this option gives you 1-hour technical support.
The journal file in ANSYS Fluent is used to record and automate simulations for repeatability and batch processing.
editable geometry and mesh allows users to create and modify geometry and mesh to define the computational domain for simulations.
The case and data files in ANSYS Fluent store the simulation setup and results, respectively, for analysis and post-processing.
Geometry, Mesh, and CFD Simulation methodologygy explanation, result analysis and conclusion
The MR CFD certification can be a valuable addition to a student resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Description

Shell and Tube Heat Exchanger, PCM Thermal Storage System, Paper Numerical Validation, CFD Simulation by ANSYS Fluent

The problem simulates a phase change material solidification and melting inside a shell and tube heat exchanger using ANSYS Fluent software.

Numerical simulation has been performed based on the reference article [Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system], and the results have been compared and validated with the results in the paper.

The results in the article are based on both experimental and numerical simulations. In general, phase change materials are materials with organic compounds that can absorb and store large amounts of latent thermal energy.

Thermal energy storage in these materials is achieved during the phase change process (solid phase to liquid or vice versa); So that when changing phase from solid to liquid, it absorbs heat from the surrounding environment (causes cooling of the environment), and when changing phase from liquid to solid, returns heat to the environment (causes heating of the environment).

The phase change material used in this simulation is RT50-type paraffin; Thus, it has a density equal to 820 kg.m-3 and a specific heat capacity equal to 2000 j/kg.K, and a thermal conductivity equal to 0.2 W/m.K.

Also, the viscosity of the phase change material depends on the temperature and is defined as a temperature-dependent exponential function in the form of a UDF function.

A shell and tube heat exchanger of copper, in which water flows with a mass flow equal to 0.008318 kg/s and a temperature equal to 343.15 K, enters the inner tube of the heat exchanger and inside the shell part of the heat exchanger is filled by the phase change material.

The present model is designed in three dimensions using Design Modeler software. The model is a shell and tube heat exchanger consisting of an internal tube. The thickness of the pipe’s inner wall is equal to 0.0025 m.

The pipe has a length of 1 m horizontally, and its inner and outer radii are 0.011 m and 0.0425 m, respectively. Due to the symmetrical structure of the pipe and to reduce the computational cost, a half geometry should be modeled.

We carry out the model’s meshing using ANSYS Meshing software, and the mesh type is structured. The element number is 169171.

CFD Methodology

In this simulation, the solidification and melting model is used to define the process of phase change material.

To define phase change materials, it should be noted that the maximum temperature at which the solid phase temperature is (solidus temperature) is 317.2 K, and the minimum temperature at which the liquid phase is dominant (liquidus temperature) is 327.3 K. And the pure solvent melting heat is defined as 170320 j/kg.

Shell and Tube Heat Exchanger Conclusion

At the end of the solution process, a graph of the temperature changes of the shell section containing the phase change material is obtained based on the time during a complete melting process.

This diagram of temperature changes is compared and validated with the diagram in Figure 8 of the reference article. The graph of the article includes the results of experimental work and numerical CFD simulation results.

The results show that the results of the current numerical simulation have an acceptable accuracy compared with the results of numerical and experimental work in the article. Also, two-dimensional and three-dimensional contours related to pressure, temperature, and liquid mass fraction have been obtained.

shell and tube heat exchanger

Reviews

There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
Search
Whatsapp Call On WhatsApp
Udemy