Surface Tension Effect on Air Bubbles under Water Column, Ansys Fluent Training

$121.00 Student Discount

In this project, the effect of surface tension on air bubbles under a water column has been simulated and the results have been investigated.

This product includes Geometry & Mesh file and a comprehensive Training Movie.
There are some free products to check our service quality.
To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, or WhatsApp.

Click on Add To Cart and obtain the Geometry file, Mesh file, and a Comprehensive ANSYS Fluent Training Video. By the way, You can pay in installments through Klarna, Afterpay (Clearpay), and Affirm.

To Order Your Project or benefit from a CFD consultation, contact our experts via email ([email protected]), online support tab, or WhatsApp at +44 7443 197273.

There are some Free Products to check our service quality.

If you want the training video in another language instead of English, ask it via [email protected] after you buy the product.

Special Offers For Single Product

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.
If you need expert consultation through the training video, this option gives you 1-hour technical support.
The journal file in ANSYS Fluent is used to record and automate simulations for repeatability and batch processing.
editable geometry and mesh allows users to create and modify geometry and mesh to define the computational domain for simulations.
The case and data files in ANSYS Fluent store the simulation setup and results, respectively, for analysis and post-processing.
Geometry, Mesh, and CFD Simulation methodologygy explanation, result analysis and conclusion
The MR CFD certification can be a valuable addition to a student resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Description

Surface Tension Effect Project Description

In this project, numerical simulations of air bubbles under a water column with two different surface tension have been done using Ansys Fluent software. The VOF model has been used to simulate and solve the two-phase flow field equations. The two modes in this project are simulated and compared.

Geometry&Mesh

The 2D geometry of the present model is generated using SpaceClaim software. The length of the computational area is 20 mm and its height is 25 mm.

Surface Tension

The meshing of the present model has been done using Ansys Meshing software. The mesh type is structured in all of the computational domains, and the element number is equal to 200000.Surface Tension

Surface Tension Effect CFD Simulation Settings

  1. Due to the incompressibility of the flow, the pressure-based solver method has been selected.
  2. The simulation is transient.
  3. The gravity effect is considered equal to -9.81 m.s-1on Y-axis

The Laminar viscous model has been used to solve the flow field equations, and the pressure-velocity coupling scheme is SIMPLE. The second-order upwind discretization method has been used for momentum and PRESTO! For the pressure discretization.

The following tables represent a summary of the defining steps of the problem in this project and its solution:

Models
Multiphase
Homogeneous model Volume of fluid
Number of Eulerian phases 2(air& water)
Interface modeling Sharp

Interfacial

Formulation explicit
Body force formulation Implicit body force
Viscous Laminar
Material Properties
 Air
Density 1.225
viscosity 1.7894e-05
water-liquid
Density 998.2
viscosity 0.001003
Methods
Pressure-Velocity Coupling SIMPLE
  Pressure PRESTO!
  Momentum Second-order upwind
Volume fraction Compressive
Initialization
Initialization methods Standard
Patch Phase Phase2
  Variable Volume Fraction
Registers to patch Region_0
Value 1
Run calculation
Time advancement Type adaptive
Parameters
Initial time step size 0.0001
Settings Minimum time step size 0.0001
Maximum time step size 0.0001
Time step size 10000

Surface Tension Effect Results

According to the shape of the bubbles, it is clearly visible that the amount of surface tension is very effective in the size of the bubbles. The higher the surface tension, the greater the resistance to compressive force from the fluid and the larger the bubbles formed.

You can obtain Geometry & Mesh file and a comprehensive Training Movie that presents how to solve the problem and extract all desired results.

Reviews

There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
Search
Whatsapp Call On WhatsApp
Udemy