  Sale

# Rotation of a Cube Considering Sloshing Simulation, ANSYS Fluent Training

Rated 0 out of 5
(be the first to review)

\$21.00

In this project, the rotation of a cube containing water and air is investigated.

This product includes a Mesh file and a comprehensive Training Movie.

There are some free products to check our service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, or WhatsApp.

## Problem description

In this project, the rotation of a cube containing water and air is investigated. The interaction of water and air inside the cube is modeled using the Volume of Fluid (VoF) multiphase approach. The cube rotates around the Y-axis with variable angular velocity. This project investigates the simplified sloshing effect in fluid containers where due to acceleration of carrier vehicle, a situation similar to one studied here can occur. A User Defined Function (UDF) defines the variable angular velocity of the cube’s rotation. The distance of the cube to the rotation axis is equal to 1 m.

Angular velocity of rotation varies with time as the function 0.252273*sin(2.53*time+36800). VoF multiphase approach is taken into account since it is an efficient and precise approach for capturing the interface location between phases. Results show that Pressure on the bottom surface of the cube varies with radial distance to the OO’ line. As further the position is away from the OO’s line, pressure increases.

## Cube Geometry and mesh

The fluid domain geometry is designed in Design Modeler, and the computational grid is generated using Ansys Meshing. The mesh type is unstructured, and the element number is 168367. ## Rotation of a Cube CD Simulation

Critical assumptions:

• The solver type is assumed Pressure Based.
• Time formulation is assumed unsteady.
• Gravity effects are considered in Y direction equal to –9.81 m/s2.

The following table represents a summary of the defining steps of the problem and its solution.

 Models Viscous K-epsilon Standard Near wall treatment Standard wall treatment Multiphase (Volume of Fluid) No. of Eulerian phases 2 Formulation Implicit Body force formulation Implicit body force Materials Fluid Definition method FLUENT database Material name air Definition method FLUENT database Material name Water Cell zone conditions Inlet Mesh motion On UDF on Angular velocity magnitude 0.252273*sin(2.53*time+36800) Solver configurations Pressure-velocity coupling Scheme SIMPLE Spatial discretization Gradient Least square cell-based Pressure Standard Momentum Second-order Upwind K First-order Upwind Epsilon First-order Upwind

## Results and discussion

Results show that Pressure on the bottom surface of the cube varies with radial distance to the OO’ line. As further the position is away from the OO’s line, pressure increases.

There are a Mesh file and a comprehensive Training Movie that presents how to solve the problem and extract all desired results.

## Reviews

There are no reviews yet.  Call On WhatsApp