Sale

Radiation CFD Simulation Training Package

$467.00 Student Discount

This CFD training package is prepared for BEGINNER, INTERMEDIATE, and ADVANCED users of ANSYS Fluent software who are interested in the Radiation modules, including 10 practical exercises.



Click on Add To Cart and obtain the Geometry file, Mesh file, and a Comprehensive ANSYS Fluent Training Video.

To Order Your Project or benefit from a CFD consultation, contact our experts via email ([email protected]), online support tab, or WhatsApp at +44 7443 197273.

There are some Free Products to check our service quality.

If you want the training video in another language instead of English, ask it via [email protected] after you buy the product.

Solar Radiation Effect on a Gasoline Tank Simulation

  • The problem numerically simulates Solar Radiation Effect on a Gasoline Tank using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 1084263.
  • We use the P1 Radiation model and Solar Ray Tracing to apply the radiation effect.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Solar Radiation at Different Hours, Discrete Ordinates Radiation Model

  • The problem numerically simulates solar radiation at different hours using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 2054294.
  • This study is performed based on the geographical characteristics of Baku (The capital of Azerbaijan) at 8 AM and 3 PM on June 21st.
  • We perform this simulation as unsteady (Transient).
  • We use Discrete Ordinate Radiation (DO) and Solar Ray Tracing to consider radiation heat transfer.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Office Ventilation and Heating by Solar Radiation

  • The problem numerically simulates the Office Ventilation and heating by Solar Radiation using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 309156.
  • We define Energy Sources for each object inside the office to define the heat emitted from them.
  • We consider Radiation and Convection heat transfer.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Radiation Heat Transfer in a Computer Room

  • The problem numerically simulates the air conditioning of a computer room containing four computers using ANSYS Fluent software.
  • We design the 3-D model with the Design Modeler software.
  • We mesh the model with ANSYS Meshing software, and the element number equals 809037.
  • We use the Surface to Surface (S2S) model to define the Radiation model.
  • We use the ideal gas model to consider buoyancy force.

 

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Air Conditioning of Room with Balcony by Solar Radiation, ANSYS Fluent

  • The problem numerically simulates Air Conditioning of Room with Balcony by Solar Radiation using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We mesh the model with ANSYS Meshing software.
  • The mesh type is Structured, and the element number equals 290250.
  • We use the P1 Radiation model to apply solar rays.
  • We use the Ideal Gas law for air density to consider natural convection.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Facade CFD Simulation Considering Radiation (HVAC), ANSYS Fluent CFD Simulation Tutorial

  • The present problem simulates the ventilation applying the double façade of the building by ANSYS Fluent software
  • The geometry of the present model is three-dimensional and is drawn using Design Modeler software.
  • The meshing of the present model has been done using ANSYS Meshing software. The element number is 4264442.
  • The DO solar Radiation model is applied.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Solar Shading Double Glazing façade, Radiation

The present problem simulates the radiation of solar rays into the room's interior considering the effects of a wooden partition as a solar shading, and a double glazing glass of façade, using ANSYS Fluent software.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Radiation Effect on a Dome-Shaped building

  • The problem numerically simulates the heat transfer inside a mosque using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 674066.
  • We use the Rosseland Radiation and Solar Load models on the glass walls.
  • We define Heat Source on the floor.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Conical Solar Collector CFD Simulation, ANSYS Fluent

In this project, heat transfer in a conical solar collector containing water fluid is simulated and analyzed.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Solar Heat Exchanger, ANSYS Fluent CFD Simulation Tutorial

  • The problem numerically simulates the Solar Heat Exchanger using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 304200.
  • We use Discrete Ordinates (DO) and Solar Ray Tracing to consider radiation heat transfer.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

If you need the Geometry designing and Mesh generation training video for all the products, you can choose this option.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

The MR CFD certification can be a valuable addition to a student’s resume, and passing the interactive test can demonstrate a strong understanding of CFD simulation principles and techniques related to this product.

Description

Radiation, ANSYS Fluent CFD Simulation Training Package, 10 Practical Exercises

The radiation CFD Simulation Training Package is prepared for BEGINNER, INTERMEDIATE, and ADVANCED users of ANSYS Fluent software who are interested in the Radiation modules, including 10 practical exercises. You will learn and obtain comprehensive training on how to simulate projects. The achieved knowledge will enable you to choose the most appropriate modeling approaches and methods for applications and CFD simulations.

Solar Radiation

The solar charge is a type of solar ray tracing as an algorithm for transmitting solar radiation energy, which can only be used for three-dimensional models. In project number 1, the characteristics of solar radiation on surfaces and objects include longitude 36.2605 degrees, latitude 59.6168 degrees, and time zone equivalent to 4.5.  In the first case, no cover layer is provided for the gasoline tank, and in the second case, a 0.003 m cover layer is used for the tank’s perimeter.

In project number 2, using the Solar Ray Tracing model, the effects of radiation from the sun in an environment where airflow is established are investigated. In addition, the conduction heat transfer was considered in solid objects. The amount of radiation received was modeled with the geographical characteristics of Baku (The capital of Azerbaijan) at 8 AM and 3 PM on June 21st. The external air velocity was 10 m / s at 27 degrees Celsius. Soil, brick, and wood material specifications were given for land, house, and tree.

Air Ventilation in Radiation CFD Simulation Training Package

Project number 3 simulates the ventilation, air circulation, and heat transfer in a room. The heat is emitted by people, objects, and electrical equipment inside the room. A man, a computer, and two lamps are modeled inside the room; So that man with a density of 985 kg.m-3, a specific heat capacity of 3500 j.kg-1.K-1, and thermal conductivity of 0.5 Wm-1.K-1 are defined.

In project number 4, steady airflow enters the domain from the bottom of the computer room by several inlets and exits the domain from several outlets on the ceiling, considering Radiation heat transfer. This air conditioning method is new and commonly used in office environments. This method provides more energy efficiency since the flow naturally increases due to density difference and buoyancy body force. One of the room’s four main walls is exposed to a constant heat flux equal to 194 W/m2.

In project number 5, heat transfer inside a room and a balcony is e. The balcony has a glass roof and one glass wall. Due to the radiation of sunlight, both room and balcony become warmer and natural convection plays an important role in circulating the flow inside these spaces. The standard k-epsilon model is exploited to solve turbulent flow equations. The P1 solar tracing model simulates the solar rays entering the computational domain. The energy model is activated to calculate the temperature distribution in the domain.

Buildings

Project number 6 simulates the airflow through the space between the two walls of the double façade of the building. To move the airflow upwards in this space based on the density changes caused by the pressure and temperature changes, the boundary condition of the pressure equal to the atmospheric pressure at the inlet and outlet of this space has been used. The main cause of temperature changes in solar energy on the plates of these shells; therefore, the radiation energy model of Discrete Ordinates (DO) and the solar ray tracing model have been used.

Project number 7 simulates the radiation of solar rays into the room’s interior, considering the effects of a wooden partition as solar shading and a double-glazing glass façade. Argon gas has accumulated in the space between the two glasses of the double glazing;

Project number 8 problem simulates the heat transfer inside a mosque. In the present case, it is assumed that heat transfer takes place in two modes of convection and radiation. In fact, the building’s indoor heating source is powered by solar energy, and a heat source is used on the mosque’s ground floor. The heat transfer between the sidewalls of the mosque, the roof of the mosque, and its dome is done with the free airflow of the surrounding environment with a temperature of 309 K and a heat transfer coefficient of 10 W.m-2.K-1.

Solar Collector in Radiation CFD Simulation Training Package

In project number 9, heat transfer in a conical solar collector containing water fluid is simulated and analyzed. The cubic fluid domain consists of an inlet (velocity inlet type, 1m/s) and a pressure outlet. The conical collector consists of an inlet (mass-flow type, 0.0116 Kg/s) and a pressure outlet. The conical solar collector absorbs the sunlight and warms the water inside its tank.

Heat Exchanger

Project number 10 simulates a solar heat exchanger. This system consists of two parts; The water flow moves in the central part of the heat exchanger and the airflow is in the gap installed in the front plate of the heat exchanger. The heat exchanger absorber wall is exposed to solar radiation and absorbs heat through radiant heat transfer. This means that the air gap temperature in front of the absorber plate rises as the sun heats up.

Reviews

There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
Search
Whatsapp Call On WhatsApp