Sale

Turbomachinery – ANSYS Fluent Training Package, 10 Practical Exercises for ADVANCED Users

$619.00 Student Discount

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check our service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, or WhatsApp.



Click on Add To Cart and obtain the Geometry file, Mesh file, and a Comprehensive ANSYS Fluent Training Video.

To Order Your Project or benefit from a CFD consultation, contact our experts via email ([email protected]), online support tab, or WhatsApp at +1 (903) 231-3943.

There are some Free Products to check our service quality.

If you want the training video in another language instead of English, ask it via [email protected] after you buy the product.

Archimedes Screw Turbine (AST) CFD Simulation

  • The problem numerically simulates the Archimedes Screw Turbine (AST) using ANSYS Fluent software.
  • We design the 3-D model with the Design Modeler software.
  • The model is meshed by ANSYS Meshing software, and the element number is more than 2000000 elements.
  • The simulation is carried out Transient state and Mesh Motion model.
  • The VOF model and Open Channel Flow option are used.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Water Turbine (Horizontal Axis), ANSYS Fluent CFD Simulation Training

The present study investigates the water flow on the horizontal axis water turbine blades so that the purpose of the problem is to investigate the distribution of velocity and pressure on the blades wall.

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training) contact our experts via [email protected], online support, or WhatsApp.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Axial Flow Compressor (Rotor NASA 37) Simulation, ANSYS Fluent Training

  • The problem numerically simulates Axial Flow Compressor using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 278162.
  • We use a Density-Based solver to define the compressible flow.
  • We use Frame Motion to define rotational motion around compressor blades.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Mixer Tank CFD Simulation, ANSYS Fluent Training

  • The problem numerically simulates the Mixer Tank using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 152641.
  • We use VOF multi-phase model to define 3 phases: air, water and salt.
  • We use the Frame Motion method to define rotational motion for the impeller.

 

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Impeller of an Electrical Motor, Airflow Analysis, ANSYS Fluent CFD Simulation Tutorial

  • The problem numerically simulates the Impeller of an Electrical Motor using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 1786708.
  • We use the Frame Motion method to define the rotation of the impeller.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Fan Stage (Axial Flow) Aerodynamic Performance, ANSYS Fluent Training

  • The problem numerically simulates Fan Stage (Axial Flow) Aerodynamic Performance using ANSYS Fluent software.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the element number equals 757886.
  • We use the Frame Motion model to define rotational motion.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Rampressor, ANSYS Fluent CFD Simulation Training

The present problem simulates the air compression inside a Rampressor using ANSYS Fluent software.

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check our service quality.

To order your ANSYS Fluent project (CFD simulation and training), contact our experts via [email protected], online support, or WhatsApp.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Helical Blade Wind Turbine, 5 different RPMs

  • The problem numerically simulates Helical Blade Vertical Axis Wind Turbine using ANSYS Fluent software.
  • This project investigates TSR (tip speed ratio) using different rotational speeds for blade turbines.
  • We design the 3-D model by the Design Modeler software.
  • We Mesh the model by ANSYS Meshing software, and the polyhedral element number equals 507457.
  • We perform this simulation as unsteady (Transient).
  • We use the Mesh Motion method to define rotational motion in the distinct zone around blades.

 

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Water Wheel (Pelton Wheel), ANSYS Fluent CFD Simulation Training

  • The problem numerically simulates the Water Wheel (Pelton Wheel) using ANSYS Fluent software.
  • We design the 3-D model by the Solidworks software.
  • We Mesh the model by ANSYS Meshing software.
  • We perform this simulation as unsteady (Transient).
  • We use the Mesh Motion method model to define rotation movement.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

FSI Method for Water Turbine, ANSYS Fluent CFD Simulation Training

The present study investigates the water flow around a vertical water turbine considering unsteady CFD simulation.

This product includes Geometry & Mesh file and a comprehensive Training Movie.

There are some free products to check the service quality.

To order your ANSYS Fluent project (CFD simulation and training) contact our experts via [email protected], online support, or WhatsApp.

To order your ANSYS Fluent project (CFD simulation and training) contact our experts via [email protected], online support, or WhatsApp.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

If you need the Geometry designing and Mesh generation training video for all the products, you can choose this option.

If you need the Geometry designing and Mesh generation training video for one product, you can choose this option.

If you need expert consultation through the training video, this option gives you 1-hour technical support.

Description

Turbomachinery CFD Simulation Package, ANSYS Fluent Training fro ADVANCED Users

This CFD training package is prepared for ADVANCED users of ANSYS Fluent software in the Turbomachinery area including 10 practical exercises. You will learn and obtain comprehensive training on how to simulate projects. The achieved knowledge will enable you to choose the most appropriate modeling approaches and methods for applications and CFD simulations.

Water Turbine

In project number 1, an Archimedes Screw Turbine (AST) consisting of 3 blades is simulated in two models. The first model is unsteady Frame Motion (MRF), and the second one is an unsteady Mesh Motion. Considering the conception of both methods, the turbine in the frame-motion method is in a stationary state, and the fluid around it is rotating, while in the Mesh Motion method, the rotating zone that contains the Screw Turbine rotates independently.

Study number 2 investigates the water flow on the horizontal axis water turbine (HAWT) blades so that the purpose of the problem is to investigate the distribution of velocity and pressure on the wall of the blade. There are two areas around the blades, including a cylindrical area just around the blades and a large area around the cylinder. The flow of water in the large outer space behaves like a normal flow, while in the cylindrical region around the blades, the rotational flow is caused by the rotational motion of the blades.

In project number 3, a water wheel as an example of Pelton turbines is simulated. Most water wheels are mounted vertically on a horizontal axis, and can also be mounted horizontally on a vertical shaft. The wheels are perpendicular to certain parts of the turbine due to reduced friction force and increased nozzle thrust.

Study number 4 investigates the water flow around a vertical water turbine considering unsteady CFD simulation. In the present case, it is assumed that the turbine blades are affected by the flow of the passing fluid; that is, the fluid flowing through the turbine blades impedes forces on the turbine body and these forces cause deformation or resizing of the body of these blades. Therefore, the present problem consists of two fluid and solid solutions at the same time and hence, the FSI method and the coupling between the fluid flow and the Transient Structural are used.

Compressor

Problem number 5 is going to simulate the airflow inside an axial flow compressor (Rotor Nasa 37). The present model consists of a series of blades for an axial flow compressor connected to the central axis within a cylindrical area. To simplify the simulation model, only one row of rotating blades is drawn on the central rotor of the compressor.

Problem number 6 simulates the air compression inside a Rampressor. The Rampressor is a unique type of ultrasonic compressor rotor that operates at a high-pressure ratio, and engine technology and gas compression are the ramjet ultrasonic shock wave. The operating mechanism of these compressors is such that the gas flow passes through a fixed outer cover and a sloping surface or inner ramp.

Mixer (turbomachinery)

In project number 7, a mixer tank is modeled and the effect of its rotating impeller on the mixing procedure is investigated. The simulation is done using the VOF model for the three phases of air, water, and salt. The k-epsilon model is applied for solving the turbulent flow inside the tank.

Impeller

In project number 8, the airflow passing over an impeller of an electrical motor is investigated. The airflow enters the computational domain with 80m/s, and the impeller rotates with 1000rpm. A Realizable k-epsilon model is exploited to solve turbulent flow equations.

Fan

In project number 9, steady airflow in a 3D geometry of the fan stage is simulated. Fan stage is a common apparatus used for creating steady airflow in industrial applications used in the cooling process of newly painted body parts. The periodic boundary condition is used for simulation of the real fan stage at the lowest computational cost.

Wind Turbine (turbomachinery)

Finally, in problem number 10, we are simulating a small-scale VAWT with helical blades. We are simulating a wind turbine with dimensions of 10 x 20 cm with an average diameter of 7 cm in the present problem. This simulation was performed at wind speeds of 2 m / s and speeds of 60-40-80-100-120 rpm, and torque was reported as output.

You can obtain Geometry & Mesh file and a comprehensive Training Movie that presents how to solve the problem and extract all desired results.[/vc_column_text][/vc_column][/vc_row]

Reviews

There are no reviews yet.

Leave a customer review

Your email address will not be published. Required fields are marked *

Back To Top
Search
Whatsapp Call On WhatsApp